
WE3B-1 

An Accurate Analytical Representation of the Continuous Spectrum 
Excited on Multilayer Stripline Structures in Spectral-Gap Regions 

Paolo Baccarelli, Paolo Burghignoli, Fabrizio Frezza, 

Alessandro Galli, Giampiero Lovat, and Simone Paulotto 

“La Sapien&’ University of Rome, Electronic Engineering Department, Rome, Italy. 

AbStrUCl - In this work, an approximate asymptotic 
closed-form representation is derived for the continuous- 
spectrum current excited by a delta-gap source in a 
multilayer stripline. The proposed representation is accurate 
also very close to the source and is valid inside the low- 
frequency spectral-gap region of the dominant leaky mode 
supported by this structure, where the main contribution to 
the continuous-spectrum current is given by the residual- 
wave current. Numerical results which confirm the accuracy 
and numerical efticiency of the proposed approach are 
provided at different frequencies. 

The excitation of leaky modes in planar waveguides has 
received considerable attention in recent years, both from 
a theoretical and a numerical point of view [l-3]. As is 
well known, leaky modes may furnish a rapidly convergent 
representation of the continuous spectrum excited by a 
finite source [4]: such continuous spectrum may cause 
undesirable spurious effects, which can give rise to an 
attenuation of the signal along the line, to interferences 
with the bound mode, and to cross-talk with neighboring 
circuits [5]. 

As shown in [6,7], the stripline structure supports a 
dominant leaky mode with a very wide spectral gap which 
begins at zero frequency. Inside the spectral gap the leaky 
mode is nonphysical and does not provide an accurate 
representation of the continuous spectrum at all. The part 
of the continuous spectrum not represented by the 
(physical) leaky modes has been studied in [Xl, where it 
was termed residual wave. In [9] a simple asymptotic 
expression for such residual wave has been derived, which 
however is not very accurate near the source and inside the 
above-mentioned spectral-gap region, where the residual 
wave represents the dominant contribution to the whole, 
continuous spectrum. 

In this work, a new improved asymptotic representation 
for the residual-wave current excited on a multilayer 
stripline by a delta-gap source is derived in a convenient 
closed fortn. The proposed fortnulation allows to 
accurately represent the continuous spectrum at low 
frequencies, also very close to the source region, with 

considerable computational advantages with respect to a 
full-wave approach. 

This paper is organized as follows. In Section II the 
derivation of the proposed expression for the continuous 
spectrum is summarized. In Section III numerical results 
are given and discussed for a representative two-layer 
structure. Finally, in Section IV conclusions are presented. 

II. ANALYSIS 

We consider here a multilayer stripline structure (see the 
inset of Fig. I) excited by a delta-gap source with 
longitudinal profile L,(z) and tratw~erse profile r&x). 

The current density on the strip is assumed to be 

J(x,z)= KW(4zo 1 with a factorized dependence on 

longitudinal and transverse coordinates. By means of a 
Galerkin Moment-Method (MOM) in the spectral domain, 
the spectral current on the strip can be written as [2]: 

where a,(k,,k,) is the relevant spectral-domain Green’s 

function of the background structure, which is known in a 
simple closed form. 

The integral in the denominator of Eq. (1) is a 
multivalued function of k, with branch points equal to the 

propagation constants kpn (n = I,&...) of the hackground- 

structure modes [Z]. The zeroes of the denominator are the 
solutions of the dispersion equation for the stripline, i.e., 
they are the propagation constants of the stripline modes; 
in particular, by choosing the integration path C, in the 

complex k, plane (see Fig. l), the guided (real proper) 

modes are obtained, while the choice of the integration 
path C, furnishes the leaky (complex or real improper) 
modes. Assuming that the only mode above cutoff of the 
background structure is the TM, mode, there is just one 
branch point k, = k,, on the real axis of the k, plane (all 

the other branch points are located on the imaginary axis). 
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Our aim is to derive an accurate evaluation of the 
residual-wave curxnt related to such branch point. This is 
important because in the spectral gap the residual-wave 
current is the main contribution to the continuous spectrum 
[9]. The TM, residual-wave (RW) current can be 
evaluated by an integration in the k, plane along the 

steepest-descent path (SDP) through the krMB branch 

point [9]: 

I&) =& jr(k,)e-“=‘dk, = e-“rMo= 
SLIP 

+@)r?dr (2) 

where k, = k,, - js has been used and F(s) is given by: 

and where Top and Bottom are the proper and improper 
Riemann sheets of the k, plane. To obtain a closed-form 

expression for I,,(z), we perform an asymptotic 

evaluation of the integral in Eq. (2) for large z: this entails 
the representation of F(s) in the limit of s --f 0. To this 

aim, the first step involves the evaluation of the following 
integrals: 

(4) 

By choosing a constant transverse function o(x) = l/w, 

its Fourier transform if(k,) = Sinc(k,w) does not allow us 

to evaluate the integral in Eq. (4) by means of the Cauchy 
Integral Theorem, because the integrand is not 
infinitesimal at complex infinity. However, by referring for 
example to the C, path in Fig. 1, we may express the Sine 

function in terms of complex exponentials, thus obtaining: 

Now we can evaluate the integral in Eq. (5) by means of 
the closed contour shown in Fig. 2, which encloses an 

infinite number of poles k,,. =w (n= l,i,...). By 

letting r + 0 and R + m in Fig. 2, we obtain: 

where the first-order pole in k, = 0, due to the choice of 

the basis function r&r), has given rise to the first addend 

in the right-hand side of Eq. (6), and the contribution in 

k,, = km has been isolated. As shown in [9], when 

k, + k,, , the g,(k,,k,) function can approximately be 

written as a function of k, = dk: ; with the change of 

variable k, = k,, - js , after some algebra, Eq. (6) (and 

its analogue for the case of the c, path) can be written, in 

the limit of s + 0 : 

where A is a complex coefficient whose calculation 
involves the summation of a series similar to the series 
occurring in Eq. (6), suitably truncated to a finite number 
of terms (typically 20-30). Moreover, the plus and minus 
signs in Eq. (7) correspond to the integrals along the C, 

and C, paths, respectively. 

By means of Eq. (7), F(s) can be written, through Eqs. 
(I) and (3), as: 

where the presence of two poles s, and s2 can be observed, 
and No is a suitable complex coefficient. On the basis of 
Eq. (S), the integral in Eq. (2) can be evaluated in a closed 
form; the result is [lo]: 

-~e”‘[Sgn[3m[~*]]+Erf(jll;I;)]} (9) 

where the principal determination of the square-root 

function is defined as -x/2 5 Arg(J) <z/2, Sgn is the 

sign function, and Erfis the error function. 

To validate the proposed formulation, we show residual- 
wave current calculations for a two-layer stripline with 
parameters h, = I mm, hz = 0.5 mm, w = 7 mm, E,, = IO, 
+2 = I (see the inset of Fig. 3). The relevant dispersion 
carves for the phase constant of both the dominant bound 
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mode (EH,) and the dominant leaky mode of the stripline 
are shown in Fig. 3, together with the TM0 mode of the 
background structue. 

The spectral-gap region corresponds to the frequency 
range where the leaky pole is not physical [9]. We can 
divide it into two ranges, depending on the real or complex 
nature of the involved leaky poles. In the first range there 
are two improper real solutions of the dispersion equation: 
this region begins at zero frequency and ends at the 
spliffing-point frequency, where the hvo real improper 
poles coalesce mto one double improper pole (point SP in 
Fig. 3). In the second range there are hvo’improper 
complex-conjugate solutions, corresponding to hvo 
nonphysical leaky poles: this region begins at the splitting- 
point frequency and ends at the crossing-point frequency 
(point CP in Fig. 3). At the crossing point the phase 
constants of the dominant leaky mode and the TMo’mode 
are equal, and therefore one of the hvo leaky poles 
becomes physical [IO]. 

In the subsequent figures we show a comparxon among: 
i) the ‘exact’ (full wave) RW cm-rent, calculated by means 
of a Galerkin MOM in the spectral domain by using five 
longitudinal (z-directed) and four transverse (x-directed) 
basis functions for the current profile, and numerically 
integrating along the SDP in the spectral k, plane; ii) the 
asymptotib RW current, calculated according to Eqs. (3 I) 
and (32) in [9]; iii) the proposed formulation for the RW 
current, calculated according to Eq. (9) above. 

In Fig. 4 the amplitude of the RW current as a function 
of the normalized longitudinal abscissa zl& is reported in 
a logarithmic scale at the frequencyf= I GHz, for which 
the poles are an improper complex-conjugate pair: as it 
can be seen, the proposed formulation is in a very good 
agreement with the exact RW current also very close to the 
source, while the asymptotic formulation begins to be 
acaxate only for z a 4 &. 

In Fig. 5 the same comparison is shown atf= 0.5 GHz, 
for which the poles are improper real: in this case the 
asymptotic formulation is substantially inaccurate in the 
displayed range of zl& values, while our formulation is 
still in a very good agreement with the exact RW. This is 
even more evident in Fig. 6, where the comparison at f = 
0.25 GHz (for which the poles are again improper real) 
shows a greater discrepancy between the asymptotic 
formulation and our formulation. The latter increases its 
accuracy by lowering the frequency, since one improper 
real pole tends to the krMo branch point, and therefore the 

main con&ibution to the SDP integral comes from a 
neighborhood of k,, , coherently with the limit s + 0 

used to derive the proposed representation. 
Finally, it is worth noting that the implementation of our 

formulation requires about half a minute of CPU time on a 

standard PC, while the full-wave approach requires hours 
of calculation. 

IV. CONCLUSlON 

In this work, an original closed-form representation of 
the residual-wave corrent excited by a delta-gap soorce in 
a multilayer stripline has been presented. T,he proposed 
formulation allows us to evaluate in a simple and 
analytical form the continuous-spectrum current in the 
spectral-gap region of the dominant leaky mode, which is 
very wide especially for narrow metal strips. Such 
continuous-spectrum current may adversely affect the 
performance of a given structure, due to signal degradation 
and interference with neighboring circuits. The proposed 
formulation furnishes an accurate representation of the 
residual-wave current also very near the source, and it is 
computationally very convenient if compared with a full- 
wave approach. 
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Fig. 1 - Integration paths C, and C, in the k, plane, which give 
rise to leaky and bound modes, respectively; crosses represent 
the spectral Green’s function pole locations. Inset: transverse 
section of the multilayer stripline structure. 

Fig. 2 - Integration contour used to apply Cauchy lntegml 
Tkorm for the evaluation ofthe integral function cr(k,). 
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Fig. 3 - Normalized phase constant (plko) vs. frequency f for the Fig. 4 - Amplitude of the residual-wave current for a structure 
fundamental guided mode EHO of the stripline (solid line), the as in Fig. 3, as a function of the normalized longitudinal 
dominant leaky mode of the stripline (dotted line: real improper: abscissa z/L, at the fiquencyf = 1 GHZ (for reference, the 
broken line: complex improper), and the TM, mode of the current amplitude of the EHQ guided mode IS about 50 mA). 
background structure (/ight solid line). Pmometers: h, = 1 mm, 
h2 = 0.5 mm, w = 7 mm, G, = 10, tr2 = 1 (see the inset). 
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Fig. 6 - Same as in Fig, 4, at the frquencyf = 0.25 GHz. 

812 


	MTT025
	Return to Contents


