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Abstract — In this work, an approximate asympiotic
closed-form representation is derived for the continuous-
spectrum current excited by a delta-gap source in a
multilayer stripline. The proposed representation is accurate
also very close to the source and is valid inside the low-
frequency spectral-gap region of the dominant leaky mode
supported by this strocture, where the main contribution to
the continuous-spectrum current is given by the residual-
wave current. Numerical results which confirm the accuracy
and numerical efficiency of the proposed approach are
provided at different frequencies.

I INTRODUCTION AND BACKGROUND

The cxcitation of leaky modes in planar waveguides has
received considerable attention in recent years, both from
a theoretical and & numerical point of view [1-3]. As is
well known, leaky modes may furnish a rapidly convergent
representation of the continuous spectrum excited by a
finite source [4]: such continuous spectrum may cause
undesirable spurious effects, which can give rise to an
attenuation of the signal along the line, to interferences
with the bound mode, and to cross-talk with neighboring
circuits [5).

As shown in [6,7], the stripline structure supports a
dominant leaky mode with a very wide spectral gap which
begins at zero frequency. Inside the spectral gap the leaky
mode is nonphysical and does not provide an accurate
representation of the continuous spectrum at ali. The part
of the continuous spectrum not represented by the
(physical) leaky modes has been studied in [8], where it
was termed residual wave. In [9] a simple asymptotic
expression for such residual wave has been derived, which
however is not very accurate near the source and inside the
above-mentioned spectral-gap region, where the residual
wave represenis the dominant contribution to the whole,
continuous spectrum.

In this work, a new improved asymptotic representation
for the residual-wave current excited on a multilayer
stripline by a delta-gap source is derived in a convenient
closed form. The proposed formulation allows to
accurately represent the continuous spectrum at low
frequencies, alsc very close to the source region, with

considerable computational advantages with respect to a
full-wave approach.

This paper is organized as follows. In Section II the
derivation of the proposed expression for the continuous
spectrum is summarized. In Section IH numerical results
are given and discussed for a representative two-layer
structure. Finally, in Section IV conclusions are presented.

II. ANALYSIS

We consider here a multilayer stripline structure (see the
inset of Fig. 1) excited by a delta-gap source with
longitudinal profile L (z) and transverse profile 7(x}.

The current density on the strip is assumed to be
J(x,z)=1{x)I(z)z,, with a factorized dependence on
longitudinal and transverse coordinates. By means of a
Galerkin Moment-Method (MoM} in the spectral domain,
the spectral current on the strip can be written as [2]:

27 (k,)

T(k,)=5 —
[ 7k Gk, bk,
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where éz(kx,kz) is the relevant spectral-domain Green’s
function of the background structure, which is known in a
simple clesed form,

The integral in the denominator of Eq. (1) is a
multivalued function of &, with branch points equal to the
propagation constants £, (n=1,2,...) of the background-
structure modes [2]. The zeroes of the denominator are the
solutions of the dispersion equation for the stripline, i.e.,
they are the propagation constants of the stripline modes;
in particular, by choosing the integration path C. in the
complex k_ plane (see Fig. 1), the guided (real proper)
modes are obtained, while the choice of the integration
path C, furnishes the leaky (complex or real improper)
modes. Assuming that the only mode above cutoff of the
background structure is the TM, mode, there is just one
branch point &, = ky,, on the real axis of the k, plane (all
the other branch points are located on the imaginary axis).

309

0-7803-7695-1/03/$17.00 © 2003 IEEE 2003 TEEE MTT-S Digest



Our aim is to derive an accurate evaluation of the
residual-wave current related to such branch point. This is
important because in the spectral gap the residual-wave
current is the main contribution to the continuous spectrum
[9]. The TM, residual-wave (RW)} current can be
evaluated by an integration in the k, plane along the

steepest-descent path (SDP) through the &, branch

point [9]: -
1 ¢ . Lo

(@) =5~ If(kz)e‘f*z’dkz = ¢t _[F(s)e'“ds @)
”SDP 0

where k, =k, — js has been used and F(s) is given by:

Fo =T, Tk @)
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and where Top and Bottom are the proper and improper
Riemann sheets of the &, plane. To obtain a closed-form
expression for [I,.(z}), we perform an asymptotic
evaluation of the integral in Eq. (2) for large z: this entails
the representation of F(s) in the limit of 5 — 0. To this

aim, the first step involves the evaluation of the following
integrals:

Bratke) = ik Gk k)ak,

CriCy

C)

By choosing a constant transverse function 7{x)=1/w,
its Fourier transform 77(k,) = Sinc(k,w) does not allow us
to evaluate the integral in Eq. (4) by means of the Cauchy
Integral Theorem, because the integrand is not

infinitesimal at complex infinity, However, by referring for
example to the C, path in Fig. 1, we may express the Sinc

function in terms of complex exponentials, thus obtaining:

G_(k,k)dk, (5
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Now we can evaluate the integral in Eq. (5) by means of
the closed contour shown in Fig. 2, which encloses an

2 2 _ -
kp,,—kz (n=12,.) By

letting » — 0 and R — <= in Fig. 2, we obtain:

infinite number of poles kx,,,,
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where the first-order pole in &, =0, due to the choice of
the basis function 7{x), has given rise to the first addend

in the right-hand side of Eq. (6), and the contribution in

=k has been isolated. As shown in [9], when
T Mo

k, = kpy, the 522(kx,kz) function can approximately be

written as & function of k, = /&% +k? ; with the change of
variable &k =k

T™O
its analogue for the case of the ¢, path) can be written, in

the limitof s - 0 :

— js, after some algebra, Eq. (6) (and

Dns = kTMOReS[Gzz(kl) ]k,=km., ’
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where 4 is a complex coefficient whose calculation
involves the summation of a series similar to the series
occurring in Eq. (6), suitably truncated to a finite number
of terms (typically 20-30). Moreover, the plus and minus
signs in Eq. (7) correspond to the integrals along the ¢,
and (, paths, respectively.

By means of Eq. (7), F(s) can be written, thr()ugh Egs.

(1) and (3), as:

F(s)=N, Js ( !
s§—5,
where the presence of two poles 5; and s; can be observed,
and Ny is a suitable complex coefficient. On the basis of
Eq. (8), the integral in Eq. (2) can be evaluated in a closed
form; the result is [10]:

1

5—8,
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Ly (2) = jm Nye Mo .
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where the principal determination of the square-root
function is defined as —#7/2 < Arg(\/?) <m/2, Sgn is the
sign function, and Erfis the error function.

III. NUMERICAL RESULTS

To validate the proposed formulation, we show residual-
wave current calculations for a two-layer stripline with
parameters A; = | mm, k; = 0.5 mm, w =7 mm, &, = 10,
& = 1 (see the insct of Fig, 3). The relevant dispersion
curves for the phase constant of both the dominant bound



mode (EHy) and the dominant leaky mode of the stripline
are shown in Fig. 3, together with the TM, mode of the
background structure.

The spectral-gap region corresponds to the frequency
range where the leaky pole is not physical [9]. We can
divide it into two ranges, depending on the real or complex
nature of the involved leaky poles. In the first range there
are two improper real solutions of the dispersion equation:
this region begins at zero frequency and ends at the
splitting-point frequency, where the two real improper
poles coalesce into one double improper pole (point SP in
Fig. 3). In the second range there are two®improper
complex-conjugate solutions, corresponding to  two
nonphysical leaky poles: this region begins at the splitting-
point frequency and ends at the crossing-point frequency
(point CP in Fig. 3). At the crossing point the phase
constants of the dominant leaky mode and the TM, mode
are equal, and thercfore one of the two leaky poles
becomes physical [10].

In the subsequent figures we show a comparison among:
i) the “exact’ (full wave) RW current, calculated by means
of a Galerkin MoM in the spectral domain by using five
longitudinal (z-directed) and four transverse (x-directed)
basis functions for the current profile, and numerically
integrating along the SDP in the spectral &, plane; i) the
asymptoti¢ RW current, calculated according to Egs. (31)
and (32) in [9]; iii) the proposed formulation for the RW
current, calculated according to Eq. (9) above.

In Fig. 4 the amplitude of the RW current as a function
of the normalized longitudinal abscissa z/4, is reported in
a [ogarithmic scale at the frequency /= 1 GHz, for which
the poles are an improper complex-conjugate pair: as it
can be seen, the proposed formulation is in a very good
agreement with the exact RW current also very close to the
source, while the asymptotic formulation begins to be
accurate only forz z 4 Ag.

In Fig. 5 the same comparison is shown at = 0.5 GHz,
for which the poles are improper real: in this case the
asymptotic formulation is substantially inaccurate in the
displayed range of z/4; values, while our formulation is
still in a very good agreement with the exact RW. This is
even more evident in Fig. 6, where the comparison at f =
0.25 GHz (for which the poles are again improper real)
shows a greater discrepancy between the asymptotic
formulation and our formulation. The latter increases its
accuracy by lowering the frequency, since one improper
real pole tends to the &, branch peint, and therefore the
main contribution to the SDP integral comes from a
neighborhood of ky,,, coherently with the limit s — 0
used to derive the proposed representation,

Finally, it is worth noting that the implementation of our
formulation réguires about half a minute of CPU time on a
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standard PC, while the full-wave approach requires hours
of calculation.

IV. CONCLUSION

In this work, an original closed-form representation of
the residual-wave current excited by a delta-gap source in
a multilayer stripline has been presented. The proposed
formulation allows us to evaluate in a simple and
analytical form the continuous-spectrum current in the
spectral-gap region of the dominant leaky mode, which is
very wide especially for narrow metal strips. Such
continuous-spectrum current may adversely affect the
performance of a given structure, due to signal degradation
and interference with neighboring circuits, The proposed
formulation furnishes an accurate representation of the
residual-wave current also very near the source, and it is
computationally very convenient if compared with a full-
wave approach.
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Fig. 1 - Integration paths C, and €, in the k_plane, which give
rise to leaky and bound modes, respectively; crosses represent
the spectral Green’s function pole locations, /nset: transverse
section of the multilayer stripline structure.
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Fig. 3 — Normalized phase constant (k) vs. frequency f for the

fundamental guided mode EH, of the stripline (sofid line), the
dominant leaky mode of the stripline (dotted line: real improper;
broken line, complex improper), and the TMy mode of the
background structure (fight solid line). Parameters: h; = 1 mm,
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k= 0.5 mm, w=7mm, &; = 10, &; = 1 (see the inset).
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Fig. 5 — Same as in Fig. 4, at the frequency /= 0.5 GHz.
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Fig. 2 — Integration contour used to apply Cauchy Integral
Theorem for the evaluation of the integral function D, (k,}.
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Fig. 4 — Amplitude of the residual-wave current for a structure
as in Fig. 3, as a function of the normalized longitudinal
abscissa z/Ag, at the frequency = 1 GHz (for reference, the
current amplitude of the EH;, guided mode is about 50 mA).
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Fig. 6 — Same as in Fig. 4, at the frequency /= 0.25 GHz.
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